

Cloud type comparisons of AIRS, CALIPSO, and CloudSat cloud height and amount

by

Brian H. Kahn¹, Moustafa T. Chahine¹, Graeme L. Stephens², Gerald G. Mace³, Roger T. Marchand⁴, Zhien Wang⁵, Christopher D. Barnet⁶, Annmarie Eldering¹, Robert E. Holz⁷, Ralph E. Kuehn⁸, and Deborah G. Vane¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
 ²Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO, USA
 ³Department of Meteorology, University of Utah, Salt Lake City, UT, USA
 ⁴Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA
 ⁵Department of Atmospheric Science, University of Wyoming, Laramie, WY, USA
 ⁶NOAA–NESDIS, Silver Springs, MD, USA
 ⁷CIMSS–University of Wisconsin–Madison, Madison, WI, USA
 ⁸NASA Langley Research Center, Hampton, VA, USA

Thanks to: T. Hearty, Sung-Yung Lee, and the AIRS, CloudSat, and CALIPSO science teams

AIRS Science Team Meeting Greenbelt, MD October 10th, 2007

Motivation – 1

• Results are submitted:

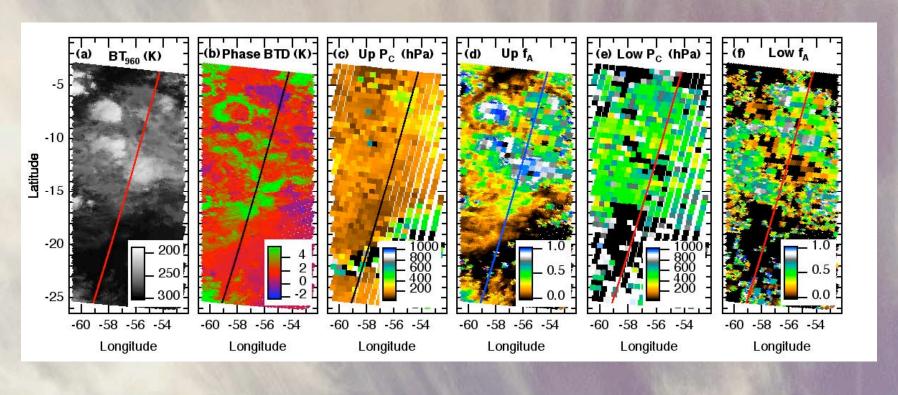
Kahn, B.H., M.T. Chahine, G.L. Stephens, G.G. Mace, R.T. Marchand, Z. Wang, C.D. Barnet, A. Eldering, R.E. Holz, R.E. Kuehn, and D.G. Vane (2007), Cloud type comparisons of AIRS, CALIPSO, and CloudSat cloud height and amount, *Atmos. Chem. Phys. Discuss.*, 7, 13915–13958.

Clouds and Earth's climate

- Radiative heating/forcing several times to orders of magnitude greater than climate change constituents (e.g., trace gases, aerosols)
 - (e.g., Hartmann et al. 1992; Forster et al. 2007)
- Critical component of hydrological cycle (e.g., Webster 1994)
 - Very small amounts of water have very large climatic impacts
- Cloud feedbacks at heart of climate forecast uncertainty (e.g., Stephens, 2005; IPCC)
- Many other impacts

Motivation – 2

- Quantify precision of IR remote sensing of cloud properties
 - Characterize uncertainties, strengths, weaknesses
 - Ongoing re-assessments of algorithm changes
- Collocated CloudSat and CALIPSO observations
 - Active measurements precise cloud detection, vertical profiles
 - Cloud-type assessment
- AIRS cloud height and amount used in retrieval of bulk, microphysical, optical, other cloud properties
- Move towards combined retrievals using full power of A-train



Outline

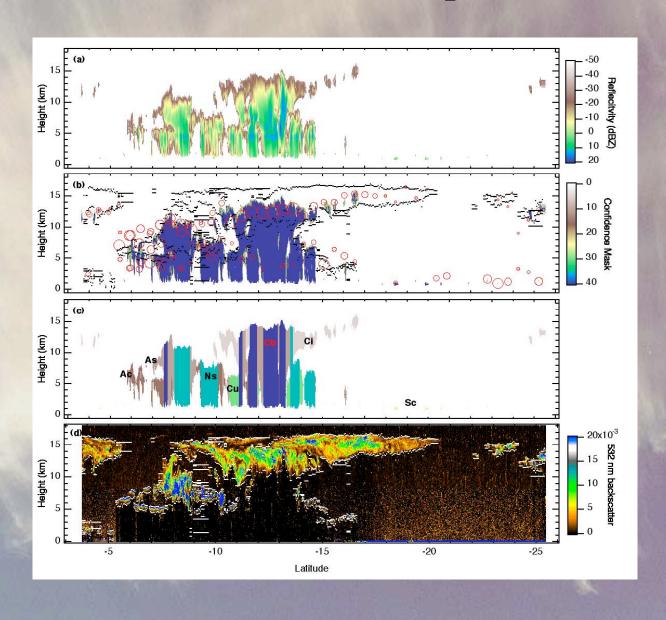
- An illustrative granule: the view from AIRS, CloudSat, and CALIPSO
- FOV-scale comparisons: how to quantify?
- A five-day climatology
- CloudSat/AIRS comparisons by cloud type
 - Show joint PDFs
 - V4/V5 differences
 - Insights gained from comparisons
- CALIPSO/AIRS comparisons
 - Differences and similarities compared to CloudSat
 - V4/V5 differences
- Take home messages

An Illustrative Granule in Tropical Indian Ocean

BT₉₆₀

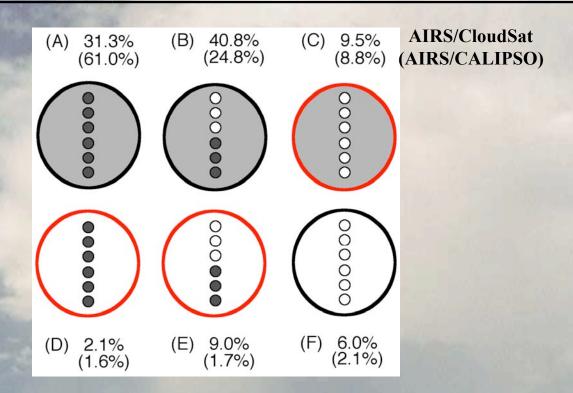
 $BTD_{1231-960}$

Up CTP


Up ECF

Low CTP

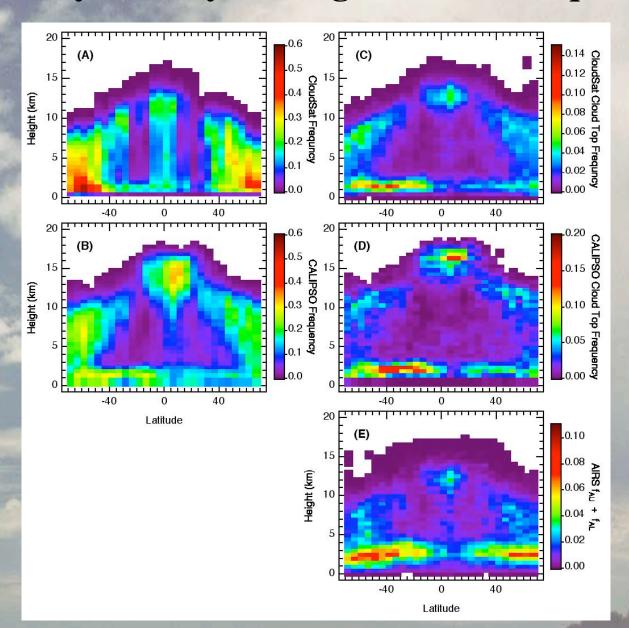
Low ECF



An Illustrative Granule in Tropical Indian Ocean

Match CloudSat and CALIPSO to AIRS FOV

AIRS Cloud CC Homog Cloud AIRS Cloud CC Hetero Cloud AIRS Cloud CC Homog Clear


AIRS Clear CC Homog Cloud AIRS Clear CC Hetero Cloud AIRS Clear CC Homog Clear

Five-day Zonally Averaged Cloud Frequency

All CloudSat

All CALIPSO

CloudSat
Cloud Top
Only

CALIPSO Cloud Top Only

AIRS
Upper +
Lower ECF

Five-day Cloud Frequency ± 70° lat

Instrument	% Clear	% Cloudy
CloudSat	48.1	51.9
CALIPSO	22.7	77.3
(5 km)		
AIRS	19.6	80.4
$(f_A \ge 0.01)$		
AIRS	17.1	82.9
$(f_A > 0.0)$		

Percentages vary due to instrument sensitivity, resolution of FOV, algorithm differences, etc.

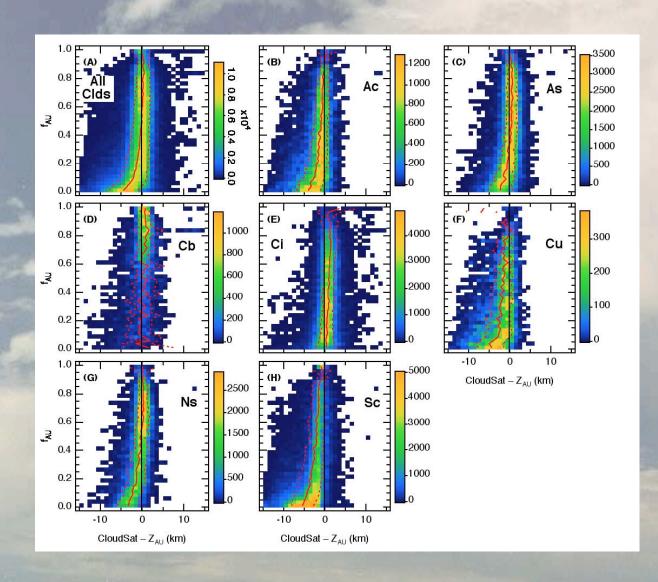
Significant Contribution from Size of FOV


Northern Mid-latitudes (20 to 60N)			Tropics (20S to 20N)					
% Total	Thin	Thick	Opaque	%	Total	Thin	Thick	Opaque
Resolution: 1	km	0.0004.00	0.000	Resolut	tion: 1	km		
High 23.2	5.1	12.6	5.5	High	31.3	10.9	12.2	8.2
Middle 17.1	0.3	3.9	12.9	Middle		0.1	0.9	4.5
Low 31.2	0.0	0.0	31.2	Low	30.2	0.0	0.0	30.2
Clear 28.5				Clear	33.1			
Resolution: 5	km	(H155-634)	19/200	Resolut	tion: 5	km		
High 23.7	5.6	13.2	4.9	High	31.9	11.6	13.0	7.3
Middle 17.9		5.5	10.9	Middle	5.2	0.2	1.0	4.0
Low 39.0	7.1	10.1	21.8	Low	40.2	10.5	10.6	19.1
Clear 19.4				Clear	22.7			
Resolution: 1	0 km			Resolut	tion 10	km		
High 23.7	5.7	13.4	4.6	High	32.7	12.4	13.7	6.6
Middle 17.7		5.9	10.1	Middle		0.3	1.1	3.7
Low 40.7	8.3	12.5	19.9	Low	41.7	12.3	12.4	17.0
Clear 17.9	1707	8.75700		Clear				
Resolution: 20 km		Resolui	tion: 20	km				
High 24.3	6.3	13.9	4.1	High		10000	14.5	5.6
Middle 18.0	2.0	6.5	9.5	Middle		0.3	1.0	3.4
Low 42.0	9.5	14.5	18.0	Low	43.4	14.5	14.1	14.8
Clear 15.7				Clear		-		

Lifted from Menzel et al., "MODIS global cloud-top pressure and amount estimation:

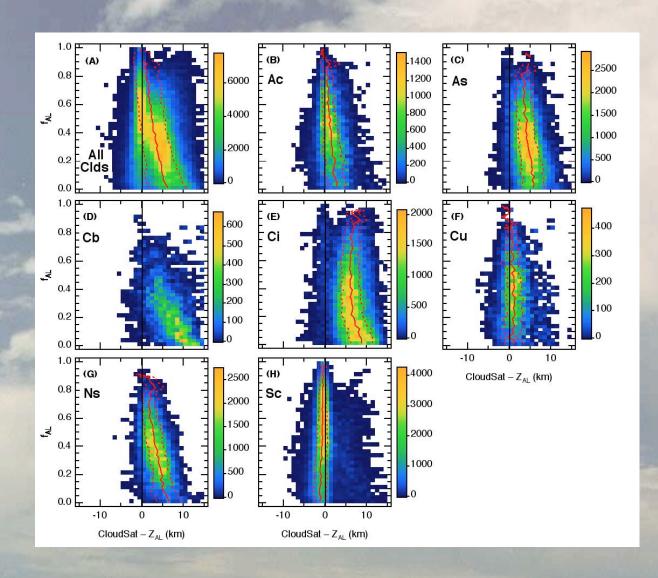
Algorithm description and results", J. Applied Met. Climatol. (in press)

Frequency PDFs of CloudSat - AIRS CTH

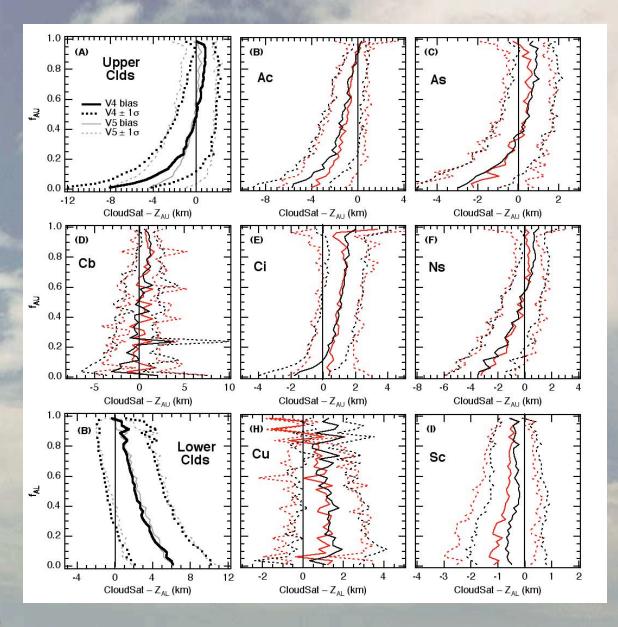


Upper AIRS CTH – Top Bin CloudSat CTH

Lower AIRS CTH – Top Bin CloudSat CTH


Cloud-type PDFs for Upper AIRS CTH

Partition
Upper AIRS CTH –
Top Bin CloudSat CTH
by Cloud Type


Cloud-type PDFs for Lower AIRS CTH

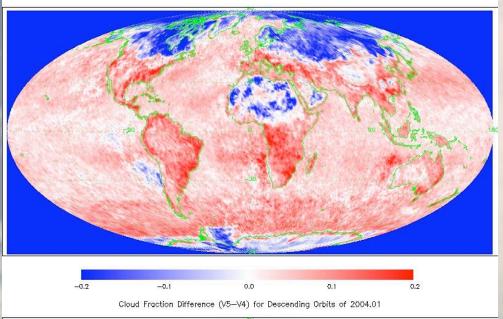
Partition
Lower AIRS CTH –
Top Bin CloudSat CTH
by Cloud Type

V4 vs. V5 Partitioned by Cloud-type

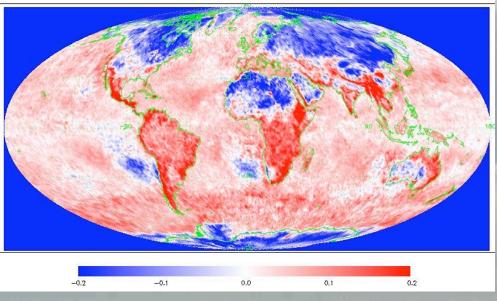
V4 and V5 Differences

Certain cloud types much more spatially homogeneous

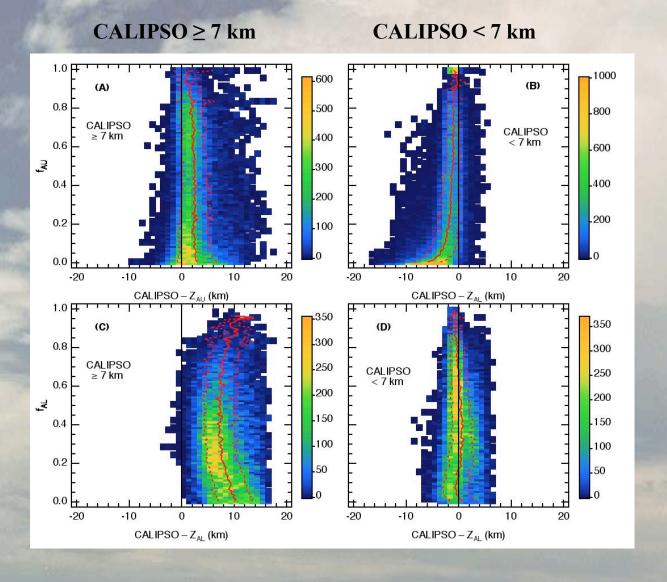
% All FOVs	% All FOVs
Found	Homogeneous
66.8	17.5
16.0	7.1
19.7	14.1
3.1	2.6
21.6	12.6
6.2	1.2
9.8	9.2
46.9	7.3
	Found 66.8 16.0 19.7 3.1 21.6 6.2 9.8


Heterogeneous distributions of Clear, Ac, Cu, and Sc within AIRS FOVs

Homogeneous distributions of As, Cb, Ci, and Ns within AIRS FOVs


V4 vs. V5: Significant Sample Size Changes

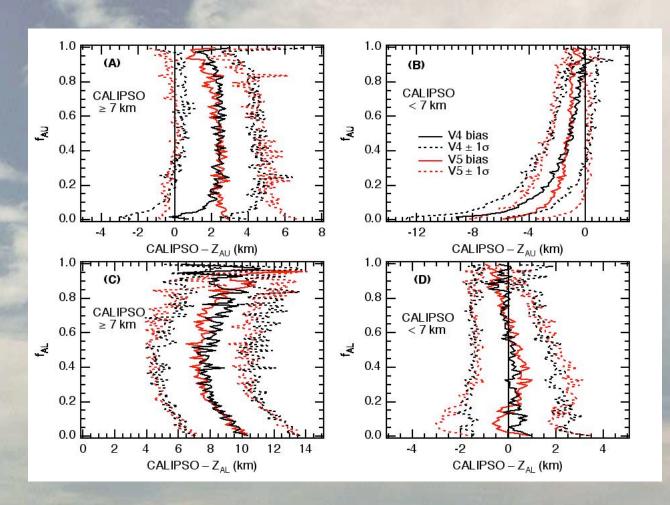
V5–V4 Ascending 2004–01


V5-V4 Descending 2004-01

Plots courtesy of Sung-Yung Lee

Frequency PDFs of CALIPSO - AIRS CTH

AIRS Upper CTH


AIRS Lower CTH

CALIPSO/AIRS V4 vs. V5 Differences

CALIPSO ≥ 7 km

CALIPSO < 7 km

AIRS Upper CTH

AIRS Lower CTH

"Take Home" Messages

• CloudSat/CALIPSO and AIRS agreement dependent on cloud-type

Cloud	AIRS	Bias	± 1σ
Type	Layer		Variability
All	Upper	-4.0 to 0.2	1.2-3.6
All	Lower	0.1 to 6.2	1.8-4.5
Ac	Upper	-4.0 to 0.2	0.7 - 3.0
As	Upper	-2.3 to 0.7	0.9 - 2.6
Cb	Upper	-1.4 to 1.6	0.9-4.0
Ci	Upper	0.2 to 1.5	1.1-2.8
Cu	Lower	-0.3 to 1.5	0.3 - 2.2
Ns	Upper	-3.3 to 0.4	0.7 - 2.5
Sc	Lower	-1.3 to -0.3	0.4–1.7

CALIPSO	AIRS	Bias	± 1σ
$Z_{ m CLD}$	Layer		Variability
> 7 km	Upper	0.6 to 3.0	1.2-3.6
> 7 km	Lower	6.5 to 10.8	1.2 - 4.0
≤ 7 km	Upper	-5.8 to -0.2	0.5 - 2.7
≤ 7 km	Lower	-0.7 to 1.0	0.5 - 2.8

- AIRS missed/false detection rate lower with CALIPSO (good result)
- Certain cloud-types more heterogeneous within AIRS FOV (Clear, Ac, Cu, Sc)
- Differences between V4/V5 from certain cloud-types (Ac, As, Ci, Sc)